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Abstract

Used for a long time for diffusion studies, PFG NMR techniques are now widely used to study flow through porous media. We

discuss here the effects of the magnetic field inhomogeneities and the finite gradient pulse duration in this case. We propose a

statistical model based on spatial correlations of the magnetic field and velocity field and as far as we can, we draw practical

conclusions on the PFG NMR measurements conditions.

� 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

For a long time, there has been an important interest

in the use of NMR (nuclear magnetic resonance) to in-

vestigate porous media. Different NMR techniques such

as relaxation measurements [1–4], NMR imaging [5,6]

(MRI) or PFG NMR (pulsed-field-gradient NMR) have

been used to characterise geometrical properties or dy-

namics of fluid phases through the porous media. PFG
NMR appears to be particularly interesting, since it al-

lows fluid transport characterisation with a spatial res-

olution higher than what can be achieved by MRI; this

technique was thoroughly used to investigate diffusion

processes [7–11], but flow studies in porous media have

also been reported [12–18].

The key point in PFG NMR techniques is the fact

that, theoretically, the magnetisation decay MDðkÞ as a
function of the pulsed field gradient intensity is directly

the Fourier transform of the averaged propagator PDðnÞ:

MDðkÞ ¼ M0

Z
PDðnÞeikn dn ð1Þ

where MDðkÞ is the echo magnetisation, D is the time

interval between gradient pulses, and k is the reciprocal

length: k ¼ cgd where c is the gyromagnetic ratio, g is

the pulsed gradient intensity, and d is the pulsed gradi-

ent duration. As introduced by Callaghan [19], the av-

eraged propagator PDðnÞ is the probability distribution
of displacement n along the direction of the pulsed

gradient over a time D. This function allows one to de-

termine all the statistics of fluid transport through the

porous media and it is particularly relevant for the study

of complex transport processes.

More generally, Eq. (1) derives from the the total

dephasing u ¼ /ðDÞ accumulated by each fluid particle

when it flows through the porous medium during the
time interval D. The magnetisation decay results from

the ensemble average over all the particle dephasing:

MD ¼ M0

Z
pðuÞeiu du; ð2Þ

where pðuÞ is the probability distribution of dephasing.

Let us remark that, in this case, we neglect any relaxa-

tion effects. To study dynamics, the pulsed NMR se-

quences used for PFG NMR measurements are designed

so that the dephasing induced by the applied gradient

pulses is:

ua ¼ kn: ð3Þ
So, it is clear that the propagator is easily determined if
the total dephasing is only ua or if the other dephasing

terms can be neglected (in this case, while u ¼ ua, Eqs.

(2) and (3) straightforwardly give Eq. (1)).

Unfortunately, in some cases, the relation between

total dephasing and displacement is not as simple as this

previous linear equation: there are perturbing effects like

internal field inhomogeneities (for a porous medium,
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this is due to the difference between the magnetic sus-
ceptibility of the grain and that of the fluid) or the finite

duration of each gradient pulse. The effects of field in-

homogeneities are a constant problem for the use of

NMR in porous media and particularly for PFG NMR

techniques: when a fluid particle will travel through the

porous medium, it will accumulate an uncertain deph-

asing depending on its trajectory through the sample.

Let us call bð~rrÞ the fluctuating part of the magnetic field:
bð~rrÞ ¼ Bð~rrÞ � B0, where Bð~rrÞ is the local magnetic field

and B0 ¼ hBð~rrÞi. For a travel time T, the dephasing in-

duced by internal field inhomogeneities is, for each fluid

particle:

ub ¼
Z T

0

cb½~rrðtÞ�dt: ð4Þ

The total dephasing is therefore u ¼ ua þ ub; Eq. (1) is

no longer valid and the determination of the propagator

becomes problematic. We can remark that the latter
term (ub) arises, even in the absence of any applied

gradient pulse.

In its general formulation, the problem becomes very

difficult to deal with: first, fluid dynamics process (~rrðtÞ)
and magnetic properties (bð~rrÞ) are coupled. And second,

the knowledge of magnetic field spatial distribution re-

quires the solution of the Maxwell equations with the

correct boundary conditions: it turns out to be impos-
sible for any arbitrary random porous matrix, and even

for modeled porous media such as monodisperse sphere

packing, this is not obvious. So, in the absence of a

general theory for transport in an inhomogeneous field,

different approximate approaches have been introduced

to deal with such a problem, mostly in the case of dif-

fusion in an inhomogeneous field.

Very early, the approximation of a uniform back-
ground gradient g0 has been introduced as an attempt to

describe inhomogeneities. For free diffusion in an un-

restricted medium, Hahn [20] (by using a random walk

model) or Torrey [21] (by introducing a diffusion term in

Bloch equations) obtained the same expression for the

magnetisation decay. It is clear that such an approxi-

mation is very crude to describe diffusion in a porous

medium: the linearisation of internal field inhomogene-
ities can only be valid for very short times (i.e., corre-

sponding to fluid displacements much smaller than the

pore size) and wall effects were not taken into account.

To extend this attempt, the Gaussian-phase approx-

imation has been introduced, assuming that the proba-

bility distribution of net dephasing u is Gaussian. Using

this approximation, different authors have considered

wall effects ([22], for simple pore geometries and uniform
gradient) or general inhomogeneous field [23]. As

pointed out by some authors [23–25], such an approxi-

mation has a restricted validity range and, in practice, it

holds for short times and is exact for all times for a

uniform gradient in an unbounded medium.

Now, more sophisticated approaches used to describe
diffusion in inhomogeneous field have been introduced.

As an extension to the constant and uniform gradient

g0, Le Doussal and Sen [25] have presented an analytic

solution to the problem of diffusion in a parabolic

magnetic field. They find characteristic length and time

scales for such a problem and they obtained scaling laws

in agreement with experimental data in porous media.

Another way to deal with such a question is to consider
spatial correlation of the inhomogeneous magnetic field.

For instance, Brown and Fantazzini [26] obtained re-

sults in qualitative agreement with experiments. Some

theoretical works have also been published for the

problem of spins diffusing in a random field [27,28].

This paper is devoted to the presentation of a statis-

tical model which describes the effects of internal field

inhomogeneities on PFG NMR experiment of flows
through a random porous medium; it is based on the

spatial correlation of the magnetic field. We introduce

this model because the description of magnetic field in-

homogeneities by background gradients cannot be used

in the flow case; this is a local description of inhomo-

geneities and can be used only for small enough dis-

placements. Background gradient description could

therefore be adequate for diffusion processes, but it is
not for flow processes.

The effects of the gradient pulses� finite duration are

also discussed. Such effects are easily taken into account

for free diffusion, but in the case of restricted diffusion

the theory is not fixed. In the flow case, a simple ex-

pansion shows that, during the gradient pulse, we also

encode the fluid particle velocities in addition to their

positions.
We first present the phase shift induced by the mag-

netic field inhomogeneities and the velocity variations,

and thus, we obtain an expression for the magnetisation

decay in the most general case (Section 2). In Section 3,

we introduce a statistical model based on the spatial

correlations of the magnetic field and the velocity field.

After this general discussion, we try, to the extent pos-

sible, to draw practical conclusions from this study. In
Section 4, we present the application of our results to

porous media that are not too pathological (typically

those for which it is possible to define a unique length

scale lc, the grain size corresponding to the grain di-

ameter for monodisperse bead pack). Finally, in Section

5, we discuss quantitatively such effects using the pa-

rameters from the PFG NMR experiments we previ-

ously performed.

2. Magnetisation decay at echo time for PFG NMR

Let us consider the case of a fluid particle flowing

through a porous medium. Here, the behaviour of each

particle is determined: the flow is assumed to be sta-
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tionary and laminar and we neglect molecular diffusion
effects. In those conditions, each particle j follows a gi-

ven trajectory Tj that could be known by solving the

transport equations in the appropriate medium. In that

case, along the trajectory Tj of the fluid particle j, bð~rrÞ is

a function of the particle position along Oz, the direc-

tion of the mean flow; neglecting back flow

bð~rrÞalong Tj
¼ bjðzÞ: ð5Þ

In a very similar way, at each position~rr in the fluid, we

introduce vð~rrÞ the deviation of the z-component of the

fluid velocity defined as vð~rrÞ ¼ vzð~rrÞ � hvzð~rrÞi, where

vzð~rrÞ is the z-component of the fluid velocity at the po-
sition~rr and h
 
 
i represents an ensemble average on all

the fluid particles in the porous medium. Note that

hvzð~rrÞi ¼ U ¼ Q=ðS/Þ (Q is the global flow rate, / and S
are the sample porosity and cross-section). Along the

trajectory Tj of the particle j, vð~rrÞ, like bð~rrÞ, is a function

of the position z along the axis Oz; neglecting back flow

vð~rrÞalong Tj
¼ vjðzÞ: ð6Þ

We consider the general expression (Eq. (2)) for the

magnetisation decay that can be simply expressed as

MðkÞ ¼ M0heiDujij. The first step is to give an expression

for Duj, the total dephasing at echo time for each par-

ticle j. While it depends on the PFG NMR sequence

used, we will discuss first the case of the PFG-SE se-

quence [29] and the PFG-SSE sequence [30], the third
one (the APFG-SSE sequence [31], the alternating PFG-

SSE sequence) will be examined later. Fig. 1 displays the

sequences used in this paper. Here, the time interval s
remains short enough so that fluid displacements during

s are much smaller than typical pore size.1 This condi-

tion allows us to make the assumption that, for each

fluid particle, bðzÞ and vðzÞ are constant during the time

interval s.
The first term, Dub, which arises in the total deph-

asing is due to the field inhomogeneities and holds even

without any applied gradient pulse (g ¼ 0):

Dub ¼ ubðD0 þ sÞ � ubð0Þ; ð7Þ
where

ubðtÞ ¼ c
Z tþs

t
b½zðt0Þ�dt0 ð8Þ

and D0 ¼ 0 for the PFG-SE sequence. Using the as-

sumption of small s, we obtain:

ubðtÞ ¼ csbðtÞ: ð9Þ
Applying external pulsed gradients g results in an ad-

ditional phase shift, Dua:

Dua ¼ uaðt2Þ � uaðt1Þ; ð10Þ
where

uaðtÞ ¼ cg
Z tþd

t
zðt0Þdt0: ð11Þ

Considering the above assumption of short s, we use the

following expansion of z:

zðt0Þ ¼ zðtÞ þ ðt0 � tÞvzðtÞ for t < t0 < t þ d ð12Þ
so that

uaðt1Þ ¼ k zðt1Þ
�

þ d
2
vzðt1Þ

�

and

(a)

(b)

(c)

Fig. 1. NMR pulse sequences used in our experiments: we superimpose

magnetic field gradient pulses of intensity g and duration d to a classic

spin echo sequence (the shaded rectangles correspond to the magnetic

field gradient pulses). (a) PFG-SE sequence; (b) PFG-SSE sequence;

(c) APFG-SSE sequence: each gradient pulse has a duration of d=2, so

that the effect of each pair of gradient pulses is equivalent to one pulse

of duration d. The time duration D has been chosen here to describe

the effective time interval between gradient pulses (or pairs of pulses in

the case of APFG-SSE). D0 is the time duration between p=2Þx pulses

for the PFG-SSE and APFG-SSE sequences.

1 In practice, such a condition is not very restrictive since, if we need

long measurement time, one should use the PFG-SSE sequence and

increase the time duration D while keeping s short.
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uaðt2Þ ¼ k zðt2Þ
�

þ d
2
vzðt2Þ

�
:

Thus

Dua � cgd n

�
þ d

2
Dv
�

¼ k n

�
þ d

2
Dv
�
;

Dub � csDb;
ð13Þ

where

Du ¼ uðzðt2ÞÞ � uðzðt1ÞÞ for u ¼ b or v ð14Þ
and n is the particle displacement between t1 and t2
(n ¼ zðt2Þ � zðt1Þ).

Finally, the total dephasing Du ¼ Dua þ Dub appears

to be a function of the displacement n, as expected, and

also of the variation of magnetic field Db and of the

variation of velocity Dv:

Du ¼ k n

�
þ d

2
Dv
�
þ csDb: ð15Þ

The variation of magnetic field, Db, and of velocity, Dv,
depends of course on the displacement n of a fluid

particle along its trajectory. To characterise the random

quantity Dv during the fluid displacement, we introduce

the distribution function pðDv; nÞ, the probability dis-

tribution for a fluid particle to be submitted to a vari-
ation of velocity Dv for a displacement n. We also

introduce the distribution function pðDb;Dv; nÞ, the

probability distribution to observe a variation of mag-

netic field Db for a displacement n and a variation of

velocity Dv.
The magnetisation decay MðkÞ=M0 can now be ex-

pressed as:

eiDuj
� �

¼
Z Z Z

eiDupðDb;Dv;nÞpðDv;nÞPDðnÞdDbdDvdn:

ð16Þ
We now assume that the variables Db and Dv corre-

sponding to the variation of b and v for a displacement n
along Oz are uncorrelated: hDbDvi ¼ 0. Such an as-

sumption is not easy to justify, but it should be ac-

ceptable for an enough random porous matrix. Then,

Eq. (16) becomes

eiDuj
� �

¼
Z Z Z

eiDupðDb; nÞpðDv; nÞPDðnÞdDbdDvdn

ð17Þ
pðDb; nÞ is the probability distribution for a fluid particle

to be submitted to a variation of magnetic field Db for a

displacement n.

Introducing ~ppðDb; nÞ (or ~ppðDv; nÞ), the Fourier trans-

form of pðDb; nÞ (or pðDv; nÞ) relative to Db (or Dv), we
finally obtain

eiDuj
� �

¼
Z

~ppðDb; nÞ~ppðDv; nÞeiknPDðnÞdn: ð18Þ

3. Probability distributions pðDb; nÞ and pðDv; nÞ

To make precise the physical meanings of these dis-

tributions (pðDb; nÞ and pðDv; nÞ), we present the fol-

lowing remarks: the quantityZ
pðDb; nÞPDðnÞdn

� �
dDb

represents the fluid particle fraction submitted to a

magnetic field variation ranging from Db to Dbþ dDb.

The mean square of the magnetic field variation during

the time interval D is given by:

hDb2i ¼
Z Z

pðDb; nÞPDðnÞdn

� �
Db2 dDb:

Of course, when the displacement n tends to 0, pðDb; nÞ
tends to a dirac function: pðDb; 0Þ ¼ dðDbÞ.

On the contrary, when the displacements n become

much larger than nb, the characteristic length of the

variation of b (typically nb is of the order of the grain

size), so that b gets uncorrelated with its initial value,
hDb2i ¼ h bðt2Þ � bðt1Þ½ �2i tends towards the limit

value 2hb2i. In this last case, n  nb, pðDb; nÞ tends

towardsZ 1

�1
pðbÞpðbþ DbÞdb;

where pðbÞ is the probability distribution of magnetic

field b (this distribution is the resonance spectrum of the

fluid protons in the saturated porous medium and it can

be derived from the free induction decay). Let us note
that except the last point in parentheses, the above re-

marks also apply to the distribution pðDv; nÞ.
As suggested by this discussion, it appears that the

behaviour of the distributions pðDb; nÞ and pðDv; nÞ is

related to the spatial correlations of the magnetic field

fluctuations bðzÞ and of the velocity fluctuations vðzÞ for

all the fluid particles along their trajectories. Consider-

ing now all the fluid particles on their trajectories, the
spatial correlation along Oz of the magnetic field devi-

ation bðzÞ and velocity deviation vðzÞ are, respectively,

defined by the following relations:

hbðnÞ ¼ hbð0ÞbðnÞi; ð19Þ

hvðnÞ ¼ hvð0ÞvðnÞi; ð20Þ
where h
 
 
i represents an average over all the fluid

particles along their trajectories. hbðnÞ and hvðnÞ are

decreasing functions of n for any random medium.

From these correlation functions, we can derive the

width of the distribution pðDb; nÞ and pðDv; nÞ. We de-

fine hDb2in the mean square of the magnetic field shifts
associated with a particle displacement n in the direction

Oz; hDb2in is related to hbðnÞ by

hDb2in ¼ bðnÞ½
D

� bð0Þ�2
E
¼ 2 hbð0Þ½ � hbðnÞ�: ð21Þ
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Similarly, hDv2in is defined as the mean square of the
velocity variations associated with a displacement n and

hDv2in ¼ vðnÞ½
D

� vð0Þ�2
E
¼ 2 hvð0Þ½ � hvðnÞ�: ð22Þ

4. Application to simple porous medium

Until now, we considered the most general case.

To pursue this discussion, we will consider here the

particular case of porous media with a unique length

scale lc, the grain size. Later on we assume that the

correlation functions hbðnÞ and hvðnÞ can be approxi-
mately represented by the following functions:

hbðnÞ ¼ hb2i exp

�
� na

na
b

�
;

hvðnÞ ¼ hv2i exp

 
� nb

nb
v

!
:

ð23Þ

The characteristic lengths, nb and nv, are expected to be

of the order of the grain scale lc. The exponents a and b
depend on the structure of the pore connections and are

expected to be of the order unity.

An estimation of hvðnÞ and hvðnÞ can be proposed in

the model case where the porous medium is constituted
by a randomly oriented channel network. If k is the

individual length of the channels, we find (see Appendix

A) that the correlation functions are well represented by

the relations (23) with nb ¼ nv ¼ k=3:5 and a ¼ b ¼ 1:1.

From Eqs. (23) and (21), we obtain the mean square

of the magnetic field fluctuation for a displacement n

hDb2in ¼ 2 hb2i 1

�
� exp

�
� na

na
b

��
: ð24Þ

Let us remark that this is compatible with the expected

limit behaviour for small n (limn!0hDb2in ¼ 0) and large

n (limnnbhDb2in ¼ 2hb2i). The probability distribution

of magnetic field b, pðbÞ, can be derived experimentally

from the free induction decay; it is presented in Fig. 2

for random monodisperse sphere packings and, as
shown, it can be well approximated by a Gaussian dis-

tribution. Thus, for large n, the distribution pðDb; nÞ is

Gaussian. As previously noted, it becomes a Dirac

function for small n. For intermediate displacement

range, we propose as an approximation for pðDb; nÞ the

following Gaussian distribution:

pðDb; nÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

b

p exp

�
� Db2

2r2
b

�
; ð25Þ

where r2
b ¼ hDb2in. This distribution satisfies the ex-

pected limit cases (n ! 0 and n ! 1).

In the same way, the mean square of the velocity

variation is obtained and obeys the expected limit be-

haviour:

hDv2i ¼ 2hv2i 1

"
� exp

 
� nb

nb
v

!#
: ð26Þ

The probability distribution of velocity in the mean flow

direction, pðvzÞ, has been obtained from experiments and

numerical simulations [12]; it can be well approximated

by an exponential distribution:

pðvzÞ ¼
0 if vz < 0;

1
hvzi exp � vz

hvzi

h i
if vz > 0

(
ð27Þ

with hv2
z i ¼ 2hvzi2

. While v ¼ vz � hvzi, we obtain:

pðvÞ ¼
0 if v < �hvzi;

1
hvzi exp � vþhvzi

hvzi

h i
if v > �hvzi

(
ð28Þ

with hv2i ¼ hvzi2
. For large n, pðDv; nÞ tends towardsZ 1

�1
pðvÞpðvþ DvÞdv ¼ 1

2hvzi
exp

�
� jDvj

hvzi

�
: ð29Þ

Thus, we propose to approximate pðDv; nÞ by an expo-

nential distribution

pðDv; nÞ ¼ 1ffiffiffi
2

p
rv

exp

 
�

ffiffiffi
2

p
jDvj
rv

!
; ð30Þ

where r2
v ¼ hDv2in.

Fig. 2. Resonance frequency spectra pðf Þ (f in Hz) of water protons for two of our porous samples: packing of glass beads: diameter of 800lm (left)

and 81lm (right); —: approximation of spectra by Gaussian function.
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At this stage, we are able to calculate the Fourier
transform ~ppðDb; nÞ and ~ppðDv; nÞ

~ppðDb; nÞ ¼
Z

eicsDbpðDb; nÞdDb

¼ exp

�
� c2s2r2

b

2

�
; ð31Þ

~ppðDv; nÞ ¼
Z

eikðd=2ÞDvpðDv; nÞdDv ¼ 1

1 þ k2d2r2
v

8

: ð32Þ

We finally obtain the magnetisation decay from Eq.

(18)

eiDuj
� �

¼
Z

e�c2s2hb2i 1�e�ðn=nbÞa½ �

1 þ k2d2hv2i
2

1 � e�ðn=nvÞb
h i eiknPDðnÞdn: ð33Þ

Some practical consequences of this result will now be
discussed in Section 5.

5. Discussion and conclusion

5.1. Effects of the magnetic field inhomogeneities

Let us consider effects of the magnetic field inhomo-
geneities on the measured magnetisation:

heiDuji ¼
Z

e�c2s2hb2i 1�e�ðn=nbÞa½ �eiknPDðnÞdn: ð34Þ

These effects are quite easy to estimate: by taking the

inverse Fourier transform of heiDuji, we obtain an ap-

parent propagator P 0
DðnÞ, instead of the correct one

PDðnÞ:

P 0
DðnÞ ¼

Z
eiDuj
� �

e�ikn dk: ð35Þ

The ratio between this apparent propagator and the

exact propagator is the correction factor

f ðnÞ ¼ e�c2s2hb2i½1�e�ðn=nbÞa �

P 0
DðnÞ ¼ e�c2s2hb2i½1�e�ðn=nbÞa �PDðnÞ: ð36Þ

First, there are simple cases where these effects are easy

to discuss: short displacements and long displacements.

5.1.1. Small displacements

If we just consider small displacements (i.e., n � nb),
it is obvious that the magnetic field effects will not have

to be taken into account. The correction factor will al-

ways be very close to 1. Physically, the magnetic field as
seen by the fluid particles will not change during the

measurement time.

In practice, of course, how small the displacements

should be will depend on the parameters and particu-

larly on the frequency bandwidth. This point will be

discussed later.

5.1.2. Long displacements

On the opposite, for long displacements (n  nb), the

correction factor becomes constant (i.e., independent on

the displacement n):

lim
nnb

e�c2s2hb2i½1�e�ðn=nbÞa � ¼ e�c2s2hb2i: ð37Þ

This behaviour can be physically explained: if a fluid

particle population has explored a large enough number

of pores, it has also explored all the possible values of

the magnetic field fluctuations. Therefore, once this re-

gime is reached, the decay induced will become inde-

pendent of the displacement. We can remark here that

such regimes are not accessible by diffusion experiments

because it necessitates very large displacements.
In this case, in theory, the inverse Fourier transform

of the magnetisation gives the correct propagator. In

practice, we can have serious experimental problems,

since e�c2s2hb2i could be much smaller than 1 and the

signal-to-noise ratio would become very bad. Of course,

this will depend on the magnetic field characteristics in

the samples, but, because of the magnetic susceptibilities

contrasting, porous media are known to make facing
this problem difficult.

5.1.3. General case

In practice, there are a lot of cases where we deal with

propagator PDðnÞ for which displacements are neither

much smaller nor much larger than the grain size. This is

even an objective of interest of PFG NMR experiments

to study displacements around the typical grain size and
therefore the cases discussed previously cannot be ap-

plied.

Thus, we need to look at Eq. (34) in more detail.

As previously pointed out, it is easy to measure hb2i
for a given porous medium; the characteristic length

nb is expected to be of the order of the grain size and

the exponent a of order unity. To obtain approximate

values for these parameters, we propose the experi-
ment described in Appendix B; we obtain the fol-

lowing approximations for our bead pack sample:

a � 1:6 and nb � 0:67lc. From a general point of view,

we do not think that the exact values for these pa-

rameters will deeply change our discussions and con-

clusions.

For our bead pack samples, we measured different

values of the frequency bandwidth (
ffiffiffiffiffiffiffiffiffi
hf 2i

p
¼ c

ffiffiffiffiffiffiffiffiffi
hb2i

p
=2p)

ranging from 52 to 384 Hz for a proton resonance of

100 MHz (2.34 T). Let us remark that such differences in

line widths do not result from the difference in bead size

but rather from difference in magnetic susceptibilities

between bead samples. We can note here that the band-

width is of the order of 12 Hz for a bulk water sample in

our NMR device. These values will now be used as typical

frequency bandwidth to draw some practical conclu-
sions.
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Small frequency bandwidth. Fig. 3 displays the cor-

rection factor f ðnÞ as a function of the displacement n
for different values of c2 s2 hb2i. We can deduce that in

the best case (frequency bandwidth of 52 Hz), the cor-
rection factor will stay very close to unity only if the

duration s stays very small, of the order of 1 ms. For

example, for s ¼ 1 ms, the correction factor f ðnÞ will

vary from 1 to 0.9. This means that we underestimate

the weight of large displacements by about 10%. The

distortion of the propagator reaches 50% for s ¼ 2:5 ms.

This is clearly one of the advantages of the PFG

stimulated spin echo sequence over the basic PFG spin
echo sequence: the PFG-SSE allows one to increase the

measurement time while keeping s small. But in practice,

it is very difficult to keep s as small as 1 ms as s should

be at least a little longer than d, the gradient pulse du-

ration.

Therefore, such sequences should be used to study the

propagator only in very magnetically clean samples. It

could also be used if we just consider small displace-
ments. We can now provide an estimation of what we

call small displacements here. For a frequency band-

width of 52 Hz and using a s duration of 3 ms, the dis-

placements range should stay smaller than one-sixth of

the grain size: n < 0:17lc.
Large frequency bandwidth. When the frequency

bandwidth increases, it appears clearly that such se-

quences could not be used anymore. Even with a very
small s value such as 1 ms, the correction factor will vary

from 1 to 3 � 10�3 for a bandwidth of 384 Hz and the

measured propagator P 0
DðnÞ will display only very small

displacements and hide larger ones.

In this case, even if we try to use Eq. (36), it is im-

possible to obtain an estimation of the correct propa-

gator; the signal-to-noise ratio will not allow such a

correction.

5.1.4. The APFG-SSE sequence

We just discussed the limitations of the basic PFG

NMR sequences. When we face large frequency band-

width, we should use more sophisticated sequences as

the APFG-SSE sequence if we wish to perform experi-

ments. The advantages of this sequence have been

demonstrated theoretically by Cotts et al. [31] in the case

of diffusion in background gradients and the experi-

ments performed by Lucas et al. [32] have illustrated this
point in the case of diffusion coefficient imaging.

Let us discuss it in the flow case where the modelling

of the magnetic field inhomogeneities by background

gradients can no longer be used. Thus, let us go back to

the dephasing calculations:

Dub ¼ ubðt2Þ � ubðt1Þ: ð38Þ

Considering the features of the APFG-SSE sequence, we

have in this case:

ubðtÞ ¼
Z tþ2s

tþs
cbðt0Þdt0 �

Z tþs

t
cbðt0Þdt0; ð39Þ

¼ c
Z tþs

t
bðt0
�

þ sÞ � bðt0Þ
�
dt0: ð40Þ

We still use the approximation of small s, which is a

reasonable assumption for this sequence

bðt0 þ sÞ � bðt0Þ þ sb0ðt0Þ ð41Þ
so that finally

ubðtÞ � cs
Z tþs

t
b0ðt0Þdt0; ð42Þ

� cs2b0ðtÞ: ð43Þ

Thus, the total dephasing induced by magnetic field in-

homogeneities in the case of the APFG-SSE sequence is

Dub � cs2Db0: ð44Þ
It now depends on the second-order term of the mag-

netic field variations while, for the basic sequences, it

was depending on the first-order term. This clearly es-

tablishes the power of such sequence which cancels the

first-order effects.

But unfortunately, it becomes very difficult to give
quantitative estimation of this effect. b0ðtÞ is the deriva-

tive of bðtÞ along the fluid particle trajectories

b0ðtÞ ¼ db
dt

¼ db
dz

dz
dt

¼ gbvz; ð45Þ

where gb is the local magnetic field gradient and vz is the

fluid particle velocity along Oz. The probability distri-

bution of this quantity, gbvz, can neither be experimen-
tally measured nor easily estimated.

We can remark that still using the small s approxi-

mation, the effects of the fluid particle displacement and

the velocity variations are not changed by the use of

APFG-SSE sequence. This is due to the design of the

Fig. 3. Correction factor f ðnÞ as a function of the reduced displace-

ment n for different values of c2s2hb2i.
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sequence where the gradient intensity is inverted after
each pÞy pulse.

5.2. Effects of the velocity variations

We now consider the effects of the velocity variations

on the magnetisation signal

eiDuj
� �

¼
Z

1

1 þ k2d2hv2i
2

½1 � e�ðn=nvÞb �
eiknPDðnÞdn: ð46Þ

This case appears clearly less easy because the correction

factor

1

�
þ k2d2hv2i

2
½1 � e�ðn=nvÞb �

��1

depends now on both the displacement n and the wave

number k. Let us first discuss simple cases.

5.2.1. Small displacements

Once again, as long as we just consider small dis-

placements (i.e., n � nv), such effects are negligible. This

can be directly derived from Eq. (46), but this is also

physically obvious: as long as displacements are very

much smaller than the grain size, the fluid particle ve-

locities would not change during the measurement time.
In this case, the correct propagator is directly derived

from the magnetisation decay by inverse Fourier trans-

form, i.e.,

PDðnÞ ¼
Z

heiDujie�ikn dk: ð47Þ

5.2.2. Small velocities or large spacial resolution

Such effects could also be easily neglected if k2d2hv2i
is always much smaller than unity. If kmax is the maxi-

mum value for the wave number, we should have

k2
maxd

2hv2i � 1: ð48Þ
In practice, the maximum value for the wave number is

related to the spatial resolution we wish to obtain for the

propagator PDðnÞ (the spatial resolution is p=kmax).
To obtain microscopic information on the transport

process in the porous medium, a typical resolution is

one-tenth of the gain size. The corresponding kmax is

10p=lc

k2
maxd

2hv2i � 100p2 d2hv2i
l2
c

ð49Þ

and the condition k2
maxd

2hv2i � 1 becomes

d2hv2i � l2
c

100p2
: ð50Þ

A trivial and necessary condition would be that the

typical displacement during the gradient pulse should be

much smaller than the grain size, but this does not seem
to be sufficient.

Let us examine such a condition for typical values of
the experimental parameters: d � 1 ms,

ffiffiffiffiffiffiffiffi
hv2i

p
� 1 mm/s,

and lc � 100lm; the condition (50) is not satisfied.

Furthermore, we can notice that it is not for the PFG

NMR experiments we made and also for those pub-

lished by different authors (in cases where we can obtain

the experimental parameters).

We can remark that the condition (48) can be phys-

ically interpreted: the typical displacement during the
gradient pulse should be much smaller than the spatial

resolution of the measured propagator, but the intro-

duction of the grain size in this discussion appears to us

more relevant.

5.2.3. General case

When the previous conditions are not met, we have to

consider Eq. (46) in more detail; while the correction
factor depends on both k and n, the operation described

by this equation is no more a Fourier transform. Fur-

thermore, in this case, there is not an easy way to derive

PDðnÞ from the magnetisation decay.

At this stage, our question is mainly: if we do not

satisfy the previous conditions, how important could be

the errors on the propagator? Thus, our goal is not to

provide an exact and detailed mathematical analysis of
Eq. (46), but to find a way to get an estimation of the

correction factor effects. We describe in Appendix C the

process used to obtain an estimation of the propagator

from Eq. (46).

Using such an approximation, we verify the effects on

one of our experiments: in this case, we have

k2
maxd

2hv2i � 4:8, d
ffiffiffiffiffiffiffiffi
hv2i

p
� 7:5lm, and lc � 145lm.

The required conditions are not satisfied, but we can
observe in Fig. 4 that the original propagator (i.e., ob-

Fig. 4. Propagator PDðnÞ (m�1) as a function of n (m); comparison

between the measured propagator (—), and the corrected propagator

(- -); the corrected propagator was deduced from the measured one

taking account the velocity variations effects.
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tained without taking into account the velocity variation
effects) and the corrected propagator are very close. We

verified these features for all our experiments and we

always observed the same result: the differences are still

very small and sometimes unobservable.

Why do the effects appear so small when the neces-

sary conditions are not satisfied? A rigorous answer is

not straightforward. We can remark that Eq. (50) is very

conservative: it guarantees that for every wave number
value ranging from 0 to kmax, the correction factor will

be negligible. In practice, even if the condition is not

satisfied, the correction factor will stay very close to 1 on

the most part of the wave number range, so that after

integration, the effects will stay very limited.

5.2.4. Conclusion

We can try to draw practical conclusions from this
study. We just verified that, when conservative and

rigorous conditions are not satisfied, the errors on the

propagator measurements may stay small. Thus, we try

to establish a practical condition that could allow one to

neglect the velocity effects on measured propagator.

In our case, d
ffiffiffiffiffiffiffiffi
hv2i

p
=lc � 0:052; we have tested the

effects on the measured propagator when we increase

this parameter (for example, by increasing d while
keeping everything else unchanged; in particular, this

implies decreasing the gradient intensities so that k

values do not change). From the correct propagator, we

use Eq. (46) to construct the magnetisation decay and,

then, we compute the Fourier transform. We present in

Fig. 5 the results for three values of the ratio d
ffiffiffiffiffiffiffiffi
hv2i

p
=lc:

0.052, 0.2, and 0.5.

Therefore, it appears that as long as d
ffiffiffiffiffiffiffiffi
hv2i

p
=lc < 0:1

the errors on the propagator stay small. We find very

similar results for all other experiments, so that we can

propose the following condition:

d
ffiffiffiffiffiffiffiffi
hv2i

p
lc

� 1: ð51Þ

6. Conclusion

In this work, we studied in detail some of the errors

that could be made when performing PFG NMR ex-

periments on porous media flows. We propose a statis-

tical model based on spatial correlations of the velocity

field and the magnetic field to describe their effects on

the measurements.

We are aware that the choices we made for the
spatial autocorrelation functions of b and v are nec-

essarily arbitrary: we assumed that these functions

could be well represented by stretched exponential

functions. As long as such an assumption can be made

for a given porous medium, the model we presented

here stays valid. We have verified that different values

for the correlation parameters (a, b, nb, or nv) do not

change our conclusions (of course, as long as these
parameters stay in a range where they keep a physical

meaning).

We explained quantitatively why basic PFG NMR

sequences are very limited when used to study flows

through porous media. From the magnetic properties of

the medium and the analysis we performed in this paper,

we can easily predict when these sequences will fail. In

such cases, we should use the APFG-SSE sequence; on a
theoretical point of view, we can conclude that this se-

quence is clearly better, but, in this case, quantitative

predictions cannot be provided.

We also discussed the effects of the finite gradient

pulse duration on the measured propagator: in addition

to the particle displacements, phase shifts also encode

velocity variations during the measurement time. We

analysed in detail this effect and we finally propose a
practical condition that allows one to neglect it: the

mean displacement during the gradient pulse should stay

lower than the typical grain size.

This study clearly demonstrates the advantage in

using strong gradient pulses: this allows one to keep the

gradient pulse duration d short for a given value of

the wave number k: short d values minimize the effects of

the velocity variation. It also allows one to keep s du-
ration short and this finally minimizes the effects of the

magnetic field inhomogeneities.

We described here effects induced by the flow

through the porous matrix and we considered a porous

medium with a well-defined length scale. For a porous

medium with wide ranges of length scales, only the scale

Fig. 5. Propagator PDðnÞ (m�1) as a function of n (m); effects on the

measured propagator of the velocity variations for different values of

the ration d
ffiffiffiffiffiffiffiffi
hv2i

p
=lc (—: d

ffiffiffiffiffiffiffiffi
hv2i

p
=lc ¼ 0:052; -
-: d

ffiffiffiffiffiffiffiffi
hv2i

p
=lc ¼ 0:2; - -:

d
ffiffiffiffiffiffiffiffi
hv2i

p
=lc ¼ 0:5.
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corresponding to the backbone of the flow will be rel-
evant. For example, let us consider the case of a porous

medium with two length scales: a micro porosity do-

main and a macro porosity domain; the magnetisation

of the fluid part enclosed in a micro porosity domain

will not be described by our model because transport is

dominated by diffusion. For the macro porosity do-

main, where the fluid flows, our model will be relevant.

From a general point of view, the most conservative
forms of the validity conditions should stay valid

without any length scale consideration (c2s2hb2i � 1 for

the PFG NMR and PFG-SSE sequences and

k2
maxd

2hv2i < 10) so that most of our conclusions stay

valid.

We finally conclude that, in practical terms, PFG

NMR measurements of flow through porous media can

be correctly performed; PFG NMR was shown to be a
relevant tool to investigate transport and structure at the

pore scale. We provided here some elements to help

facing artefacts that can distort measurements. We just

want to point out that it is important to check such

experiments by comparing the flow mean velocity ob-

tained from NMR measurement with the one deduced

from the global flow rate through the sample: this can

help to detect artefacts.

Appendix A

Let us consider a porous medium constituted by a

network of randomly oriented connected channels and

assume that:

• All the channels are cylindrical and identical with a

length k.

• The network is statistically homogeneous and isotro-

pic; f ðXÞ the orientation probability distribution of
the channels is constant and uniform.

• On a particle trajectory Tj, the values of b and v are

constant in a particular channel, but different and un-

correlated in different channels. It follows that:

hvðnÞ
hv2i ¼ hbðnÞ

hb2i ¼ hðnÞ; ðA:1Þ

where hðnÞ is the normalised correlation function.

Let us now consider now all the channels with an ori-

entation of X and note gðX; nÞ the normalised correla-

tion function associated to this orientation:

hðX; nÞ ¼ 0 if n > k cos H;
1 � n

k cos H if 0 < n < k cos H;

�
ðA:2Þ

where H is the angle ðX;OzÞ. In the first case, all

particles have left their channels; the second part cor-

responds to the particle fraction still in their channels
for a displacement n along the direction Oz. Conse-

quently

hðnÞ ¼
Z

hðX; nÞf ðXÞdX ðA:3Þ

¼
Z

0<n<k cos H
1

�
� n

k cos H

�
sin HdH ðA:4Þ

¼
Z Hc

0

1

�
� n

k cos H

�
sin HdH; ðA:5Þ

where Hc ¼ arccosðn=kÞ. Finally, one obtains:

hðnÞ ¼ 0 if n > k;
1 � n

k 1 � ln n
k

� �
if 0 < n < k:

�
ðA:6Þ

This function, presented in Fig. 6, is correctly fitted by

expð�3:5n=kÞ1:1
.

Appendix B

We can remark that even in the absence of any ap-

plied gradient (k ¼ 0), magnetic field inhomogeneities
will induce a magnetisation decay as long as the fluid

particles are travelling:

heiDuji ¼
Z

e�c2s2hb2i ½1�e�ðn=nbÞa �PDðnÞdn: ðB:1Þ

The magnetisation decay can be measured as a function

of s : EðsÞ ¼ heiDuji. If we know the propagator PDðnÞ,
we can use Eq. (B.1) to find the best values of a and nb. If

we use very very short measurement time corresponding

to very small displacement, the propagator corresponds

to the velocity probability distribution as it can be de-

rived from numerical simulation.
Using the simplest PFG NMR sequence, we measure

the magnetisation as a function of s. We limited the

measurement time (2s), so that displacements stay very

short and the fluid particles keep the same velocity; in

this case, n ¼ 2svz and the propagator is directly related

to the velocity probability distribution

P2sðnÞ ¼
pðvzÞ
2s

: ðB:2Þ

Finally, Eq. (B.1) becomes

Fig. 6. Normalised correlation function hðn=kÞ calculated (�) for a

model porous medium constituted by a network of randomly oriented

connected channels. —: approximation by a stretched exponential

function expð�3:5n=kÞ1:1.
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EðsÞ ¼
Z

e�c2s2hb2i½1�e�ð2svz=nbÞa �pðvzÞdvz: ðB:3Þ

To a given s value corresponds a mean displacement

hni ¼ 2shvzi.
We measured EðsÞ for one of our samples (800 lm

bead pack) for different mean velocities; we compute the

right-hand side of Eq. (B.3) by varying the values of a
and nb to reproduce the experimental decay EðsÞ. Fig. 7

displays the measurement and the curves obtained from

Eq. (B.3) as a function of hni=lc ¼ 2shvzi=lc; we finally

obtain the following approximations: a � 1:6 and

nb � 0:67lc.

Appendix C

We consider Eq. (46); let us call EðkÞ the magnetisa-

tion decay measured from PFG NMR experiments:

EðkÞ ¼ heiDuji. We obtain:

EðkÞ 1

�
þ k2d2hv2i

2

�
¼
Z

PDðnÞeikn dn

þ
Z

PDðnÞKðk; nÞeikn dn; ðC:1Þ

where the function Kðk; nÞ is

Kðk; nÞ ¼ k2d2hv2ie�jn=nv jb

2 þ k2d2hv2ið1 � e�jn=nvjbÞ
: ðC:2Þ

Let us remark that
R
PDðnÞKðk; nÞeikn dn depends only on

k; taking the inverse Fourier transform of Eq. (C.1), we

now obtain:

PDðnÞ ¼
Z

EðkÞ 1

�
þ k2d2hv2i

2

�
e�ikn dk

�
Z Z

PDðnÞKðk; nÞeikn dn

� �
e�ikn dk: ðC:3Þ

To obtain an estimation of PDðnÞ, we construct the fol-
lowing series from Eq. (C.3):

p0ðnÞ ¼
Z

EðkÞ 1

�
þ k2d2hv2i

2

�
e�ikn dk;

pnþ1ðnÞ ¼ p0ðnÞ �
Z Z

pnðnÞKðk; nÞeikn dn

� �
e�ikn dk:

ðC:4Þ

This series converges very quickly and we assume that

we obtain a good approximation for the corrected

propagator PDðnÞ as given by Eq. (46).
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